MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. SAE-AISI 1330 Steel

EN AC-46400 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1330 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is SAE-AISI 1330 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77 to 120
150 to 210
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1 to 1.7
11 to 23
Fatigue Strength, MPa 75 to 85
210 to 380
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 170 to 310
520 to 710
Tensile Strength: Yield (Proof), MPa 110 to 270
290 to 610

Thermal Properties

Latent Heat of Fusion, J/g 520
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
51
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1070
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
76 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
230 to 990
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 18 to 32
19 to 25
Strength to Weight: Bending, points 26 to 38
18 to 23
Thermal Diffusivity, mm2/s 55
14
Thermal Shock Resistance, points 7.8 to 14
17 to 23

Alloy Composition

Aluminum (Al), % 85.4 to 90.5
0
Carbon (C), % 0
0.28 to 0.33
Copper (Cu), % 0.8 to 1.3
0
Iron (Fe), % 0 to 0.8
97.3 to 98
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0.15 to 0.55
1.6 to 1.9
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 8.3 to 9.7
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.25
0