MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. N06007 Nickel

EN AC-46400 aluminum belongs to the aluminum alloys classification, while N06007 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is N06007 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.1 to 1.7
38
Fatigue Strength, MPa 75 to 85
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 170 to 310
690
Tensile Strength: Yield (Proof), MPa 110 to 270
260

Thermal Properties

Latent Heat of Fusion, J/g 520
320
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 610
1340
Melting Onset (Solidus), °C 570
1260
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 22
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 7.8
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1070
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
200
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
170
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
23
Strength to Weight: Axial, points 18 to 32
23
Strength to Weight: Bending, points 26 to 38
21
Thermal Diffusivity, mm2/s 55
2.7
Thermal Shock Resistance, points 7.8 to 14
18

Alloy Composition

Aluminum (Al), % 85.4 to 90.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0.8 to 1.3
1.5 to 2.5
Iron (Fe), % 0 to 0.8
18 to 21
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0.15 to 0.55
1.0 to 2.0
Molybdenum (Mo), % 0
5.5 to 7.5
Nickel (Ni), % 0 to 0.2
36.1 to 51.1
Niobium (Nb), % 0
1.8 to 2.5
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.3 to 9.7
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.25
0