MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. S30615 Stainless Steel

EN AC-46400 aluminum belongs to the aluminum alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77 to 120
190
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1 to 1.7
39
Fatigue Strength, MPa 75 to 85
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 170 to 310
690
Tensile Strength: Yield (Proof), MPa 110 to 270
310

Thermal Properties

Latent Heat of Fusion, J/g 520
340
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 610
1370
Melting Onset (Solidus), °C 570
1320
Specific Heat Capacity, J/kg-K 890
500
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 7.8
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1070
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
220
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
260
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 18 to 32
25
Strength to Weight: Bending, points 26 to 38
23
Thermal Diffusivity, mm2/s 55
3.7
Thermal Shock Resistance, points 7.8 to 14
16

Alloy Composition

Aluminum (Al), % 85.4 to 90.5
0.8 to 1.5
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0
17 to 19.5
Copper (Cu), % 0.8 to 1.3
0
Iron (Fe), % 0 to 0.8
56.7 to 65.3
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0.15 to 0.55
0 to 2.0
Nickel (Ni), % 0 to 0.2
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 8.3 to 9.7
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.25
0