MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. 5251 Aluminum

Both EN AC-46500 aluminum and 5251 aluminum are aluminum alloys. They have 85% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is 5251 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
44 to 79
Elastic (Young's, Tensile) Modulus, GPa 74
68
Elongation at Break, % 1.0
2.0 to 19
Fatigue Strength, MPa 110
59 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 270
180 to 280
Tensile Strength: Yield (Proof), MPa 160
67 to 250

Thermal Properties

Latent Heat of Fusion, J/g 520
400
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 610
650
Melting Onset (Solidus), °C 520
610
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 100
150
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
37
Electrical Conductivity: Equal Weight (Specific), % IACS 81
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.5
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1030
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
5.4 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 170
33 to 450
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 26
18 to 29
Strength to Weight: Bending, points 32
26 to 35
Thermal Diffusivity, mm2/s 41
61
Thermal Shock Resistance, points 12
7.9 to 13

Alloy Composition

Aluminum (Al), % 77.9 to 90
95.5 to 98.2
Chromium (Cr), % 0 to 0.15
0 to 0.15
Copper (Cu), % 2.0 to 4.0
0 to 0.15
Iron (Fe), % 0 to 1.3
0 to 0.5
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
1.7 to 2.4
Manganese (Mn), % 0 to 0.55
0.1 to 0.5
Nickel (Ni), % 0 to 0.55
0
Silicon (Si), % 8.0 to 11
0 to 0.4
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.15
Zinc (Zn), % 0 to 3.0
0 to 0.15
Residuals, % 0
0 to 0.15