MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. 6008 Aluminum

Both EN AC-46500 aluminum and 6008 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
69
Elongation at Break, % 1.0
9.1 to 17
Fatigue Strength, MPa 110
55 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 270
200 to 290
Tensile Strength: Yield (Proof), MPa 160
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 520
410
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 520
620
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 100
190
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
49
Electrical Conductivity: Equal Weight (Specific), % IACS 81
160

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.5
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1030
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 170
76 to 360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 26
21 to 29
Strength to Weight: Bending, points 32
28 to 35
Thermal Diffusivity, mm2/s 41
77
Thermal Shock Resistance, points 12
9.0 to 13

Alloy Composition

Aluminum (Al), % 77.9 to 90
96.5 to 99.1
Chromium (Cr), % 0 to 0.15
0 to 0.3
Copper (Cu), % 2.0 to 4.0
0 to 0.3
Iron (Fe), % 0 to 1.3
0 to 0.35
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0.4 to 0.7
Manganese (Mn), % 0 to 0.55
0 to 0.3
Nickel (Ni), % 0 to 0.55
0
Silicon (Si), % 8.0 to 11
0.5 to 0.9
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0 to 3.0
0 to 0.2
Residuals, % 0
0 to 0.15