MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. AISI 422 Stainless Steel

EN AC-46500 aluminum belongs to the aluminum alloys classification, while AISI 422 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is AISI 422 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
260 to 330
Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 1.0
15 to 17
Fatigue Strength, MPa 110
410 to 500
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 270
910 to 1080
Tensile Strength: Yield (Proof), MPa 160
670 to 870

Thermal Properties

Latent Heat of Fusion, J/g 520
270
Maximum Temperature: Mechanical, °C 180
650
Melting Completion (Liquidus), °C 610
1480
Melting Onset (Solidus), °C 520
1470
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100
24
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
4.7
Electrical Conductivity: Equal Weight (Specific), % IACS 81
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 7.6
3.1
Embodied Energy, MJ/kg 140
44
Embodied Water, L/kg 1030
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 170
1140 to 1910
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 26
32 to 38
Strength to Weight: Bending, points 32
26 to 30
Thermal Diffusivity, mm2/s 41
6.4
Thermal Shock Resistance, points 12
33 to 39

Alloy Composition

Aluminum (Al), % 77.9 to 90
0
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0 to 0.15
11 to 12.5
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.3
81.9 to 85.8
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0.5 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0 to 0.55
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 8.0 to 11
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.25
0