MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. ASTM Grade HT Steel

EN AC-46500 aluminum belongs to the aluminum alloys classification, while ASTM grade HT steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is ASTM grade HT steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
150
Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 1.0
4.6
Fatigue Strength, MPa 110
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 270
500
Tensile Strength: Yield (Proof), MPa 160
270

Thermal Properties

Latent Heat of Fusion, J/g 520
310
Maximum Temperature: Mechanical, °C 180
1010
Melting Completion (Liquidus), °C 610
1390
Melting Onset (Solidus), °C 520
1340
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 81
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 7.6
5.4
Embodied Energy, MJ/kg 140
76
Embodied Water, L/kg 1030
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
19
Resilience: Unit (Modulus of Resilience), kJ/m3 170
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26
18
Strength to Weight: Bending, points 32
18
Thermal Diffusivity, mm2/s 41
3.2
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 77.9 to 90
0
Carbon (C), % 0
0.35 to 0.75
Chromium (Cr), % 0 to 0.15
15 to 19
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.3
38.2 to 51.7
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.55
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.0 to 11
0 to 2.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.25
0