MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. EN 1.0225 Steel

EN AC-46500 aluminum belongs to the aluminum alloys classification, while EN 1.0225 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is EN 1.0225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
130 to 140
Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 1.0
6.7 to 24
Fatigue Strength, MPa 110
170 to 220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Tensile Strength: Ultimate (UTS), MPa 270
440 to 500
Tensile Strength: Yield (Proof), MPa 160
230 to 380

Thermal Properties

Latent Heat of Fusion, J/g 520
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100
52
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 81
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 1030
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 170
140 to 390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26
16 to 18
Strength to Weight: Bending, points 32
16 to 18
Thermal Diffusivity, mm2/s 41
14
Thermal Shock Resistance, points 12
14 to 16

Alloy Composition

Aluminum (Al), % 77.9 to 90
0
Carbon (C), % 0
0 to 0.21
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.3
98 to 100
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 1.4
Nickel (Ni), % 0 to 0.55
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 8.0 to 11
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.25
0