MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. EN 1.5113 Steel

EN AC-46500 aluminum belongs to the aluminum alloys classification, while EN 1.5113 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is EN 1.5113 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
170 to 270
Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 1.0
11 to 18
Fatigue Strength, MPa 110
220 to 470
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Tensile Strength: Ultimate (UTS), MPa 270
580 to 900
Tensile Strength: Yield (Proof), MPa 160
320 to 770

Thermal Properties

Latent Heat of Fusion, J/g 520
260
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
52
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 81
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.0
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1030
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
91 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 170
270 to 1570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26
21 to 32
Strength to Weight: Bending, points 32
20 to 27
Thermal Diffusivity, mm2/s 41
14
Thermal Shock Resistance, points 12
17 to 26

Alloy Composition

Aluminum (Al), % 77.9 to 90
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.3
97 to 97.5
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
1.6 to 1.8
Nickel (Ni), % 0 to 0.55
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 8.0 to 11
0.9 to 1.1
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.25
0