MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. EN 2.4668 Nickel

EN AC-46500 aluminum belongs to the aluminum alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 1.0
14
Fatigue Strength, MPa 110
590
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
75
Tensile Strength: Ultimate (UTS), MPa 270
1390
Tensile Strength: Yield (Proof), MPa 160
1160

Thermal Properties

Latent Heat of Fusion, J/g 520
310
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 100
13
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 81
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 7.6
13
Embodied Energy, MJ/kg 140
190
Embodied Water, L/kg 1030
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
180
Resilience: Unit (Modulus of Resilience), kJ/m3 170
3490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 26
46
Strength to Weight: Bending, points 32
33
Thermal Diffusivity, mm2/s 41
3.5
Thermal Shock Resistance, points 12
40

Alloy Composition

Aluminum (Al), % 77.9 to 90
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.020 to 0.080
Chromium (Cr), % 0 to 0.15
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 2.0 to 4.0
0 to 0.3
Iron (Fe), % 0 to 1.3
11.2 to 24.6
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0 to 0.55
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 8.0 to 11
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0.6 to 1.2
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.25
0