MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. CC383H Copper-nickel

EN AC-46500 aluminum belongs to the aluminum alloys classification, while CC383H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is CC383H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
130
Elastic (Young's, Tensile) Modulus, GPa 74
140
Elongation at Break, % 1.0
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
52
Tensile Strength: Ultimate (UTS), MPa 270
490
Tensile Strength: Yield (Proof), MPa 160
260

Thermal Properties

Latent Heat of Fusion, J/g 520
240
Maximum Temperature: Mechanical, °C 180
260
Melting Completion (Liquidus), °C 610
1180
Melting Onset (Solidus), °C 520
1130
Specific Heat Capacity, J/kg-K 880
410
Thermal Conductivity, W/m-K 100
29
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
5.2
Electrical Conductivity: Equal Weight (Specific), % IACS 81
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
44
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 7.6
5.7
Embodied Energy, MJ/kg 140
83
Embodied Water, L/kg 1030
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
84
Resilience: Unit (Modulus of Resilience), kJ/m3 170
250
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 26
15
Strength to Weight: Bending, points 32
16
Thermal Diffusivity, mm2/s 41
8.1
Thermal Shock Resistance, points 12
17

Alloy Composition

Aluminum (Al), % 77.9 to 90
0 to 0.010
Bismuth (Bi), % 0
0 to 0.010
Boron (B), % 0
0 to 0.010
Cadmium (Cd), % 0
0 to 0.020
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 2.0 to 4.0
64 to 69.1
Iron (Fe), % 0 to 1.3
0.5 to 1.5
Lead (Pb), % 0 to 0.35
0 to 0.010
Magnesium (Mg), % 0.050 to 0.55
0 to 0.010
Manganese (Mn), % 0 to 0.55
0.6 to 1.2
Nickel (Ni), % 0 to 0.55
29 to 31
Niobium (Nb), % 0
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.010
Selenium (Se), % 0
0 to 0.010
Silicon (Si), % 8.0 to 11
0.3 to 0.7
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.0
0 to 0.5
Residuals, % 0 to 0.25
0