MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. CC498K Bronze

EN AC-46500 aluminum belongs to the aluminum alloys classification, while CC498K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is CC498K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
78
Elastic (Young's, Tensile) Modulus, GPa 74
110
Elongation at Break, % 1.0
14
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
41
Tensile Strength: Ultimate (UTS), MPa 270
260
Tensile Strength: Yield (Proof), MPa 160
130

Thermal Properties

Latent Heat of Fusion, J/g 520
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 610
1000
Melting Onset (Solidus), °C 520
920
Specific Heat Capacity, J/kg-K 880
370
Thermal Conductivity, W/m-K 100
73
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
10
Electrical Conductivity: Equal Weight (Specific), % IACS 81
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
32
Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 7.6
3.2
Embodied Energy, MJ/kg 140
52
Embodied Water, L/kg 1030
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
30
Resilience: Unit (Modulus of Resilience), kJ/m3 170
72
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 49
18
Strength to Weight: Axial, points 26
8.1
Strength to Weight: Bending, points 32
10
Thermal Diffusivity, mm2/s 41
22
Thermal Shock Resistance, points 12
9.3

Alloy Composition

Aluminum (Al), % 77.9 to 90
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 2.0 to 4.0
85 to 90
Iron (Fe), % 0 to 1.3
0 to 0.25
Lead (Pb), % 0 to 0.35
1.0 to 2.0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.55
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 8.0 to 11
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0 to 0.15
5.5 to 6.5
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.0
3.0 to 5.0
Residuals, % 0 to 0.25
0