MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. CC761S Brass

EN AC-46500 aluminum belongs to the aluminum alloys classification, while CC761S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is CC761S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
150
Elastic (Young's, Tensile) Modulus, GPa 74
110
Elongation at Break, % 1.0
8.7
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
42
Tensile Strength: Ultimate (UTS), MPa 270
540
Tensile Strength: Yield (Proof), MPa 160
340

Thermal Properties

Latent Heat of Fusion, J/g 520
260
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 610
960
Melting Onset (Solidus), °C 520
910
Specific Heat Capacity, J/kg-K 880
410
Thermal Conductivity, W/m-K 100
27
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
40
Electrical Conductivity: Equal Weight (Specific), % IACS 81
43

Otherwise Unclassified Properties

Base Metal Price, % relative 10
27
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 7.6
2.7
Embodied Energy, MJ/kg 140
45
Embodied Water, L/kg 1030
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
41
Resilience: Unit (Modulus of Resilience), kJ/m3 170
530
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 26
18
Strength to Weight: Bending, points 32
18
Thermal Diffusivity, mm2/s 41
8.0
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 77.9 to 90
0 to 0.1
Antimony (Sb), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 2.0 to 4.0
78 to 83
Iron (Fe), % 0 to 1.3
0 to 0.6
Lead (Pb), % 0 to 0.35
0 to 0.8
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 0.2
Nickel (Ni), % 0 to 0.55
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 8.0 to 11
3.0 to 5.0
Tin (Sn), % 0 to 0.15
0 to 0.3
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.0
8.9 to 19
Residuals, % 0 to 0.25
0