MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. SAE-AISI M48 Steel

EN AC-46500 aluminum belongs to the aluminum alloys classification, while SAE-AISI M48 steel belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is SAE-AISI M48 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
78
Tensile Strength: Ultimate (UTS), MPa 270
890 to 2390

Thermal Properties

Latent Heat of Fusion, J/g 520
260
Melting Completion (Liquidus), °C 610
1670
Melting Onset (Solidus), °C 520
1620
Specific Heat Capacity, J/kg-K 880
420
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
48
Density, g/cm3 2.9
8.7
Embodied Carbon, kg CO2/kg material 7.6
13
Embodied Energy, MJ/kg 140
190
Embodied Water, L/kg 1030
160

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
22
Strength to Weight: Axial, points 26
28 to 76
Strength to Weight: Bending, points 32
23 to 45
Thermal Shock Resistance, points 12
26 to 71

Alloy Composition

Aluminum (Al), % 77.9 to 90
0
Carbon (C), % 0
1.4 to 1.5
Chromium (Cr), % 0 to 0.15
3.5 to 4.0
Cobalt (Co), % 0
8.0 to 10
Copper (Cu), % 2.0 to 4.0
0 to 0.25
Iron (Fe), % 0 to 1.3
63.8 to 69.8
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0.15 to 0.4
Molybdenum (Mo), % 0
4.8 to 5.5
Nickel (Ni), % 0 to 0.55
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 8.0 to 11
0.15 to 0.4
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
9.5 to 10.5
Vanadium (V), % 0
2.8 to 3.3
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.25
0