MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. C61800 Bronze

EN AC-46500 aluminum belongs to the aluminum alloys classification, while C61800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
110
Elongation at Break, % 1.0
26
Fatigue Strength, MPa 110
190
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
44
Tensile Strength: Ultimate (UTS), MPa 270
740
Tensile Strength: Yield (Proof), MPa 160
310

Thermal Properties

Latent Heat of Fusion, J/g 520
230
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 610
1050
Melting Onset (Solidus), °C 520
1040
Specific Heat Capacity, J/kg-K 880
440
Thermal Conductivity, W/m-K 100
64
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
13
Electrical Conductivity: Equal Weight (Specific), % IACS 81
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 7.6
3.1
Embodied Energy, MJ/kg 140
52
Embodied Water, L/kg 1030
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
150
Resilience: Unit (Modulus of Resilience), kJ/m3 170
420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 26
25
Strength to Weight: Bending, points 32
22
Thermal Diffusivity, mm2/s 41
18
Thermal Shock Resistance, points 12
26

Alloy Composition

Aluminum (Al), % 77.9 to 90
8.5 to 11
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 2.0 to 4.0
86.9 to 91
Iron (Fe), % 0 to 1.3
0.5 to 1.5
Lead (Pb), % 0 to 0.35
0 to 0.020
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.55
0
Silicon (Si), % 8.0 to 11
0 to 0.1
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.0
0 to 0.020
Residuals, % 0
0 to 0.5