MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. C92500 Bronze

EN AC-46500 aluminum belongs to the aluminum alloys classification, while C92500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is C92500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
110
Elongation at Break, % 1.0
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
40
Tensile Strength: Ultimate (UTS), MPa 270
310
Tensile Strength: Yield (Proof), MPa 160
190

Thermal Properties

Latent Heat of Fusion, J/g 520
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 610
980
Melting Onset (Solidus), °C 520
870
Specific Heat Capacity, J/kg-K 880
370
Thermal Conductivity, W/m-K 100
63
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
12
Electrical Conductivity: Equal Weight (Specific), % IACS 81
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
35
Density, g/cm3 2.9
8.7
Embodied Carbon, kg CO2/kg material 7.6
3.7
Embodied Energy, MJ/kg 140
61
Embodied Water, L/kg 1030
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
30
Resilience: Unit (Modulus of Resilience), kJ/m3 170
170
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 49
18
Strength to Weight: Axial, points 26
9.8
Strength to Weight: Bending, points 32
12
Thermal Diffusivity, mm2/s 41
20
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 77.9 to 90
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 2.0 to 4.0
85 to 88
Iron (Fe), % 0 to 1.3
0 to 0.3
Lead (Pb), % 0 to 0.35
1.0 to 1.5
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.55
0.8 to 1.5
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 8.0 to 11
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.15
10 to 12
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.0
0 to 0.5
Residuals, % 0
0 to 0.7