MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. N06002 Nickel

EN AC-46500 aluminum belongs to the aluminum alloys classification, while N06002 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is N06002 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
210
Elongation at Break, % 1.0
41
Fatigue Strength, MPa 110
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
81
Tensile Strength: Ultimate (UTS), MPa 270
760
Tensile Strength: Yield (Proof), MPa 160
310

Thermal Properties

Latent Heat of Fusion, J/g 520
320
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 610
1360
Melting Onset (Solidus), °C 520
1260
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 100
9.9
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 81
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 2.9
8.5
Embodied Carbon, kg CO2/kg material 7.6
9.3
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 1030
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
250
Resilience: Unit (Modulus of Resilience), kJ/m3 170
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 26
25
Strength to Weight: Bending, points 32
22
Thermal Diffusivity, mm2/s 41
2.6
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 77.9 to 90
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.15
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.3
17 to 20
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0 to 0.55
42.3 to 54
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.0 to 11
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0.2 to 1.0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.25
0