MakeItFrom.com
Menu (ESC)

EN AC-46600 Aluminum vs. 238.0 Aluminum

Both EN AC-46600 aluminum and 238.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-46600 aluminum and the bottom bar is 238.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
76
Elongation at Break, % 1.1
1.5
Fatigue Strength, MPa 75
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 180
210
Tensile Strength: Yield (Proof), MPa 110
170

Thermal Properties

Latent Heat of Fusion, J/g 490
430
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 620
600
Melting Onset (Solidus), °C 560
510
Specific Heat Capacity, J/kg-K 890
840
Thermal Conductivity, W/m-K 130
100
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
25
Electrical Conductivity: Equal Weight (Specific), % IACS 94
67

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.8
3.4
Embodied Carbon, kg CO2/kg material 7.8
7.4
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1080
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
2.9
Resilience: Unit (Modulus of Resilience), kJ/m3 81
180
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 50
42
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 25
23
Thermal Diffusivity, mm2/s 51
37
Thermal Shock Resistance, points 8.1
9.1

Alloy Composition

Aluminum (Al), % 85.6 to 92.4
81.9 to 84.9
Copper (Cu), % 1.5 to 2.5
9.5 to 10.5
Iron (Fe), % 0 to 0.8
1.0 to 1.5
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.35
0 to 0.25
Manganese (Mn), % 0.15 to 0.65
0
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 6.0 to 8.0
3.6 to 4.4
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
1.0 to 1.5
Residuals, % 0 to 0.15
0