MakeItFrom.com
Menu (ESC)

EN AC-46600 Aluminum vs. 772.0 Aluminum

Both EN AC-46600 aluminum and 772.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-46600 aluminum and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 1.1
6.3 to 8.4
Fatigue Strength, MPa 75
94 to 160
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 180
260 to 320
Tensile Strength: Yield (Proof), MPa 110
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 490
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 620
630
Melting Onset (Solidus), °C 560
580
Specific Heat Capacity, J/kg-K 890
870
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
35
Electrical Conductivity: Equal Weight (Specific), % IACS 94
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 7.8
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1080
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
16 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 81
350 to 430
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 18
25 to 31
Strength to Weight: Bending, points 25
31 to 36
Thermal Diffusivity, mm2/s 51
58
Thermal Shock Resistance, points 8.1
11 to 14

Alloy Composition

Aluminum (Al), % 85.6 to 92.4
91.2 to 93.2
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 1.5 to 2.5
0 to 0.1
Iron (Fe), % 0 to 0.8
0 to 0.15
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.35
0.6 to 0.8
Manganese (Mn), % 0.15 to 0.65
0 to 0.1
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 6.0 to 8.0
0 to 0.15
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0.1 to 0.2
Zinc (Zn), % 0 to 1.0
6.0 to 7.0
Residuals, % 0
0 to 0.15