MakeItFrom.com
Menu (ESC)

EN AC-46600 Aluminum vs. ACI-ASTM CB30 Steel

EN AC-46600 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CB30 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46600 aluminum and the bottom bar is ACI-ASTM CB30 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77
210
Elastic (Young's, Tensile) Modulus, GPa 72
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 180
500
Tensile Strength: Yield (Proof), MPa 110
230

Thermal Properties

Latent Heat of Fusion, J/g 490
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 620
1430
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 130
21
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 94
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.8
2.3
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1080
130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 81
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 18
18
Strength to Weight: Bending, points 25
18
Thermal Diffusivity, mm2/s 51
5.6
Thermal Shock Resistance, points 8.1
17

Alloy Composition

Aluminum (Al), % 85.6 to 92.4
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 1.5 to 2.5
0 to 1.2
Iron (Fe), % 0 to 0.8
72.9 to 82
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.15 to 0.65
0 to 1.0
Nickel (Ni), % 0 to 0.35
0 to 2.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.0 to 8.0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.15
0