MakeItFrom.com
Menu (ESC)

EN AC-46600 Aluminum vs. AISI 301 Stainless Steel

EN AC-46600 aluminum belongs to the aluminum alloys classification, while AISI 301 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46600 aluminum and the bottom bar is AISI 301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77
190 to 440
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.1
7.4 to 46
Fatigue Strength, MPa 75
210 to 600
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 180
590 to 1460
Tensile Strength: Yield (Proof), MPa 110
230 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 490
280
Maximum Temperature: Mechanical, °C 170
840
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 94
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1080
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
99 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 81
130 to 2970
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 18
21 to 52
Strength to Weight: Bending, points 25
20 to 37
Thermal Diffusivity, mm2/s 51
4.2
Thermal Shock Resistance, points 8.1
12 to 31

Alloy Composition

Aluminum (Al), % 85.6 to 92.4
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 1.5 to 2.5
0
Iron (Fe), % 0 to 0.8
70.7 to 78
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.15 to 0.65
0 to 2.0
Nickel (Ni), % 0 to 0.35
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 6.0 to 8.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.15
0