MakeItFrom.com
Menu (ESC)

EN AC-46600 Aluminum vs. AWS ER90S-B9

EN AC-46600 aluminum belongs to the aluminum alloys classification, while AWS ER90S-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46600 aluminum and the bottom bar is AWS ER90S-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 180
690
Tensile Strength: Yield (Proof), MPa 110
470

Thermal Properties

Latent Heat of Fusion, J/g 490
270
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 94
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1080
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
110
Resilience: Unit (Modulus of Resilience), kJ/m3 81
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 18
25
Strength to Weight: Bending, points 25
22
Thermal Diffusivity, mm2/s 51
6.9
Thermal Shock Resistance, points 8.1
19

Alloy Composition

Aluminum (Al), % 85.6 to 92.4
0 to 0.040
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 1.5 to 2.5
0 to 0.2
Iron (Fe), % 0 to 0.8
84.4 to 90.7
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.15 to 0.65
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0 to 0.35
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 6.0 to 8.0
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0
0 to 0.5