MakeItFrom.com
Menu (ESC)

EN AC-46600 Aluminum vs. EN 1.4005 Stainless Steel

EN AC-46600 aluminum belongs to the aluminum alloys classification, while EN 1.4005 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46600 aluminum and the bottom bar is EN 1.4005 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1
13 to 21
Fatigue Strength, MPa 75
240 to 290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 180
630 to 750
Tensile Strength: Yield (Proof), MPa 110
370 to 500

Thermal Properties

Latent Heat of Fusion, J/g 490
270
Maximum Temperature: Mechanical, °C 170
760
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 130
30
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 94
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.8
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1080
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 81
350 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 18
23 to 27
Strength to Weight: Bending, points 25
21 to 24
Thermal Diffusivity, mm2/s 51
8.1
Thermal Shock Resistance, points 8.1
23 to 27

Alloy Composition

Aluminum (Al), % 85.6 to 92.4
0
Carbon (C), % 0
0.060 to 0.15
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 1.5 to 2.5
0
Iron (Fe), % 0 to 0.8
82.4 to 87.8
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.15 to 0.65
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.35
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.0 to 8.0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.15
0