MakeItFrom.com
Menu (ESC)

EN AC-46600 Aluminum vs. SAE-AISI M3 Class 1 Steel

EN AC-46600 aluminum belongs to the aluminum alloys classification, while SAE-AISI M3 class 1 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46600 aluminum and the bottom bar is SAE-AISI M3 class 1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 180
770 to 2150

Thermal Properties

Latent Heat of Fusion, J/g 490
260
Melting Completion (Liquidus), °C 620
1610
Melting Onset (Solidus), °C 560
1570
Specific Heat Capacity, J/kg-K 890
440
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
25
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 7.8
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1080
100

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 18
26 to 72
Strength to Weight: Bending, points 25
22 to 44
Thermal Diffusivity, mm2/s 51
7.2
Thermal Shock Resistance, points 8.1
24 to 67

Alloy Composition

Aluminum (Al), % 85.6 to 92.4
0
Carbon (C), % 0
1.0 to 1.1
Chromium (Cr), % 0
3.8 to 4.5
Copper (Cu), % 1.5 to 2.5
0 to 0.25
Iron (Fe), % 0 to 0.8
76.9 to 82.9
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.15 to 0.65
0.15 to 0.4
Molybdenum (Mo), % 0
4.8 to 6.5
Nickel (Ni), % 0 to 0.35
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 6.0 to 8.0
0.2 to 0.45
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
5.0 to 6.8
Vanadium (V), % 0
2.3 to 2.8
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.15
0