MakeItFrom.com
Menu (ESC)

EN AC-46600 Aluminum vs. C10500 Copper

EN AC-46600 aluminum belongs to the aluminum alloys classification, while C10500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46600 aluminum and the bottom bar is C10500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 1.1
2.8 to 51
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 180
220 to 400
Tensile Strength: Yield (Proof), MPa 110
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 490
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 620
1080
Melting Onset (Solidus), °C 560
1080
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 130
390
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
100
Electrical Conductivity: Equal Weight (Specific), % IACS 94
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
32
Density, g/cm3 2.8
9.0
Embodied Carbon, kg CO2/kg material 7.8
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1080
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 81
24 to 680
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 18
6.8 to 12
Strength to Weight: Bending, points 25
9.1 to 14
Thermal Diffusivity, mm2/s 51
110
Thermal Shock Resistance, points 8.1
7.8 to 14

Alloy Composition

Aluminum (Al), % 85.6 to 92.4
0
Copper (Cu), % 1.5 to 2.5
99.89 to 99.966
Iron (Fe), % 0 to 0.8
0
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.15 to 0.65
0
Nickel (Ni), % 0 to 0.35
0
Oxygen (O), % 0
0 to 0.0010
Silicon (Si), % 6.0 to 8.0
0
Silver (Ag), % 0
0.034 to 0.060
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0
0 to 0.050