MakeItFrom.com
Menu (ESC)

EN AC-46600 Aluminum vs. C95410 Bronze

EN AC-46600 aluminum belongs to the aluminum alloys classification, while C95410 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46600 aluminum and the bottom bar is C95410 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77
160 to 200
Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 1.1
9.1 to 13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 180
620 to 740
Tensile Strength: Yield (Proof), MPa 110
260 to 380

Thermal Properties

Latent Heat of Fusion, J/g 490
230
Maximum Temperature: Mechanical, °C 170
230
Melting Completion (Liquidus), °C 620
1040
Melting Onset (Solidus), °C 560
1030
Specific Heat Capacity, J/kg-K 890
440
Thermal Conductivity, W/m-K 130
59
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
13
Electrical Conductivity: Equal Weight (Specific), % IACS 94
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 7.8
3.3
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1080
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
57 to 64
Resilience: Unit (Modulus of Resilience), kJ/m3 81
280 to 630
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 18
21 to 25
Strength to Weight: Bending, points 25
20 to 22
Thermal Diffusivity, mm2/s 51
16
Thermal Shock Resistance, points 8.1
22 to 26

Alloy Composition

Aluminum (Al), % 85.6 to 92.4
10 to 11.5
Copper (Cu), % 1.5 to 2.5
83 to 85.5
Iron (Fe), % 0 to 0.8
3.0 to 5.0
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.15 to 0.65
0 to 0.5
Nickel (Ni), % 0 to 0.35
1.5 to 2.5
Silicon (Si), % 6.0 to 8.0
0
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0
0 to 0.5