MakeItFrom.com
Menu (ESC)

EN AC-46600 Aluminum vs. N06985 Nickel

EN AC-46600 aluminum belongs to the aluminum alloys classification, while N06985 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46600 aluminum and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.1
45
Fatigue Strength, MPa 75
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 180
690
Tensile Strength: Yield (Proof), MPa 110
260

Thermal Properties

Latent Heat of Fusion, J/g 490
320
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 620
1350
Melting Onset (Solidus), °C 560
1260
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 94
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 7.8
8.8
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1080
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
250
Resilience: Unit (Modulus of Resilience), kJ/m3 81
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 18
23
Strength to Weight: Bending, points 25
21
Thermal Diffusivity, mm2/s 51
2.6
Thermal Shock Resistance, points 8.1
16

Alloy Composition

Aluminum (Al), % 85.6 to 92.4
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 1.5 to 2.5
1.5 to 2.5
Iron (Fe), % 0 to 0.8
18 to 21
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.15 to 0.65
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 0 to 0.35
35.9 to 53.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.0 to 8.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0 to 1.5
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.15
0