MakeItFrom.com
Menu (ESC)

EN AC-47000 Aluminum vs. 384.0 Aluminum

Both EN AC-47000 aluminum and 384.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-47000 aluminum and the bottom bar is 384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
85
Elastic (Young's, Tensile) Modulus, GPa 73
74
Elongation at Break, % 1.7
2.5
Fatigue Strength, MPa 68
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 180
330
Tensile Strength: Yield (Proof), MPa 97
170

Thermal Properties

Latent Heat of Fusion, J/g 570
550
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
580
Melting Onset (Solidus), °C 570
530
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 130
96
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
22
Electrical Conductivity: Equal Weight (Specific), % IACS 110
69

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 7.7
7.4
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1040
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 65
190
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
49
Strength to Weight: Axial, points 19
32
Strength to Weight: Bending, points 27
37
Thermal Diffusivity, mm2/s 55
39
Thermal Shock Resistance, points 8.3
15

Alloy Composition

Aluminum (Al), % 82.1 to 89.5
77.3 to 86.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 1.0
3.0 to 4.5
Iron (Fe), % 0 to 0.8
0 to 1.3
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0 to 0.1
Manganese (Mn), % 0.050 to 0.55
0 to 0.5
Nickel (Ni), % 0 to 0.3
0 to 0.5
Silicon (Si), % 10.5 to 13.5
10.5 to 12
Tin (Sn), % 0 to 0.1
0 to 0.35
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
0 to 3.0
Residuals, % 0
0 to 0.5