MakeItFrom.com
Menu (ESC)

EN AC-47000 Aluminum vs. 4147 Aluminum

Both EN AC-47000 aluminum and 4147 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a very high 99% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-47000 aluminum and the bottom bar is 4147 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
72
Elongation at Break, % 1.7
3.3
Fatigue Strength, MPa 68
42
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 180
110
Tensile Strength: Yield (Proof), MPa 97
59

Thermal Properties

Latent Heat of Fusion, J/g 570
570
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 590
580
Melting Onset (Solidus), °C 570
560
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
33
Electrical Conductivity: Equal Weight (Specific), % IACS 110
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.5
Embodied Carbon, kg CO2/kg material 7.7
7.7
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1040
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
3.1
Resilience: Unit (Modulus of Resilience), kJ/m3 65
24
Stiffness to Weight: Axial, points 16
16
Stiffness to Weight: Bending, points 54
55
Strength to Weight: Axial, points 19
12
Strength to Weight: Bending, points 27
20
Thermal Diffusivity, mm2/s 55
58
Thermal Shock Resistance, points 8.3
5.2

Alloy Composition

Aluminum (Al), % 82.1 to 89.5
85 to 88.9
Beryllium (Be), % 0
0 to 0.00030
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 1.0
0 to 0.25
Iron (Fe), % 0 to 0.8
0 to 0.8
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0.1 to 0.5
Manganese (Mn), % 0.050 to 0.55
0 to 0.1
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 10.5 to 13.5
11 to 13
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
0 to 0.2
Residuals, % 0
0 to 0.15