MakeItFrom.com
Menu (ESC)

EN AC-47000 Aluminum vs. 7050 Aluminum

Both EN AC-47000 aluminum and 7050 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-47000 aluminum and the bottom bar is 7050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
70
Elongation at Break, % 1.7
2.2 to 12
Fatigue Strength, MPa 68
130 to 210
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 180
490 to 570
Tensile Strength: Yield (Proof), MPa 97
390 to 500

Thermal Properties

Latent Heat of Fusion, J/g 570
370
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 590
630
Melting Onset (Solidus), °C 570
490
Specific Heat Capacity, J/kg-K 900
860
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
35
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 7.7
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
10 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 65
1110 to 1760
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
45
Strength to Weight: Axial, points 19
45 to 51
Strength to Weight: Bending, points 27
45 to 50
Thermal Diffusivity, mm2/s 55
54
Thermal Shock Resistance, points 8.3
21 to 25

Alloy Composition

Aluminum (Al), % 82.1 to 89.5
87.3 to 92.1
Chromium (Cr), % 0 to 0.1
0 to 0.040
Copper (Cu), % 0 to 1.0
2.0 to 2.6
Iron (Fe), % 0 to 0.8
0 to 0.15
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
1.9 to 2.6
Manganese (Mn), % 0.050 to 0.55
0 to 0.1
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 10.5 to 13.5
0 to 0.12
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.060
Zinc (Zn), % 0 to 0.55
5.7 to 6.7
Zirconium (Zr), % 0
0.080 to 0.15
Residuals, % 0
0 to 0.15