MakeItFrom.com
Menu (ESC)

EN AC-47000 Aluminum vs. EN 1.1118 Cast Steel

EN AC-47000 aluminum belongs to the aluminum alloys classification, while EN 1.1118 cast steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47000 aluminum and the bottom bar is EN 1.1118 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.7
14 to 21
Fatigue Strength, MPa 68
320 to 400
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 180
700 to 750
Tensile Strength: Yield (Proof), MPa 97
460 to 630

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
51
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1040
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
97 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 65
550 to 1050
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 19
25 to 27
Strength to Weight: Bending, points 27
22 to 23
Thermal Diffusivity, mm2/s 55
14
Thermal Shock Resistance, points 8.3
22 to 24

Alloy Composition

Aluminum (Al), % 82.1 to 89.5
0
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 0.8
97.3 to 98.3
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.050 to 0.55
1.5 to 1.8
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 10.5 to 13.5
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0