MakeItFrom.com
Menu (ESC)

EN AC-47000 Aluminum vs. EN 1.4361 Stainless Steel

EN AC-47000 aluminum belongs to the aluminum alloys classification, while EN 1.4361 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47000 aluminum and the bottom bar is EN 1.4361 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
200
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.7
43
Fatigue Strength, MPa 68
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 180
630
Tensile Strength: Yield (Proof), MPa 97
250

Thermal Properties

Latent Heat of Fusion, J/g 570
350
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 590
1370
Melting Onset (Solidus), °C 570
1330
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.6
7.6
Embodied Carbon, kg CO2/kg material 7.7
3.6
Embodied Energy, MJ/kg 140
52
Embodied Water, L/kg 1040
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
220
Resilience: Unit (Modulus of Resilience), kJ/m3 65
160
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 19
23
Strength to Weight: Bending, points 27
21
Thermal Diffusivity, mm2/s 55
3.7
Thermal Shock Resistance, points 8.3
15

Alloy Composition

Aluminum (Al), % 82.1 to 89.5
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.1
16.5 to 18.5
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 0.8
58.7 to 65.8
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.050 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.3
14 to 16
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 10.5 to 13.5
3.7 to 4.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0