MakeItFrom.com
Menu (ESC)

EN AC-47000 Aluminum vs. CC763S Brass

EN AC-47000 aluminum belongs to the aluminum alloys classification, while CC763S brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47000 aluminum and the bottom bar is CC763S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
130
Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 1.7
7.3
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 180
490
Tensile Strength: Yield (Proof), MPa 97
270

Thermal Properties

Latent Heat of Fusion, J/g 570
190
Maximum Temperature: Mechanical, °C 170
140
Melting Completion (Liquidus), °C 590
870
Melting Onset (Solidus), °C 570
830
Specific Heat Capacity, J/kg-K 900
400
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
29
Electrical Conductivity: Equal Weight (Specific), % IACS 110
32

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 7.7
2.9
Embodied Energy, MJ/kg 140
49
Embodied Water, L/kg 1040
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
30
Resilience: Unit (Modulus of Resilience), kJ/m3 65
340
Stiffness to Weight: Axial, points 16
7.5
Stiffness to Weight: Bending, points 54
20
Strength to Weight: Axial, points 19
17
Strength to Weight: Bending, points 27
17
Thermal Shock Resistance, points 8.3
16

Alloy Composition

Aluminum (Al), % 82.1 to 89.5
1.0 to 2.5
Antimony (Sb), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 1.0
56.5 to 67
Iron (Fe), % 0 to 0.8
0.5 to 2.0
Lead (Pb), % 0 to 0.2
0 to 1.5
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.050 to 0.55
1.0 to 3.5
Nickel (Ni), % 0 to 0.3
0 to 2.5
Silicon (Si), % 10.5 to 13.5
0 to 1.0
Tin (Sn), % 0 to 0.1
0 to 1.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
18.9 to 41
Residuals, % 0 to 0.25
0