MakeItFrom.com
Menu (ESC)

EN AC-47000 Aluminum vs. SAE-AISI 8620 Steel

EN AC-47000 aluminum belongs to the aluminum alloys classification, while SAE-AISI 8620 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47000 aluminum and the bottom bar is SAE-AISI 8620 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
150 to 210
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.7
13 to 31
Fatigue Strength, MPa 68
270 to 360
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 180
520 to 690
Tensile Strength: Yield (Proof), MPa 97
360 to 570

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.5
Embodied Energy, MJ/kg 140
20
Embodied Water, L/kg 1040
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
86 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 65
340 to 880
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 19
18 to 24
Strength to Weight: Bending, points 27
18 to 22
Thermal Diffusivity, mm2/s 55
10
Thermal Shock Resistance, points 8.3
15 to 20

Alloy Composition

Aluminum (Al), % 82.1 to 89.5
0
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0 to 0.1
0.4 to 0.6
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 0.8
96.9 to 98
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.050 to 0.55
0.7 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 0.3
0.4 to 0.7
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 10.5 to 13.5
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0