MakeItFrom.com
Menu (ESC)

EN AC-47000 Aluminum vs. SAE-AISI L6 Steel

EN AC-47000 aluminum belongs to the aluminum alloys classification, while SAE-AISI L6 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47000 aluminum and the bottom bar is SAE-AISI L6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 180
670 to 2090

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
42
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.6
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.7
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 1040
54

Common Calculations

Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 19
24 to 74
Strength to Weight: Bending, points 27
22 to 46
Thermal Diffusivity, mm2/s 55
11
Thermal Shock Resistance, points 8.3
22 to 70

Alloy Composition

Aluminum (Al), % 82.1 to 89.5
0
Carbon (C), % 0
0.65 to 0.75
Chromium (Cr), % 0 to 0.1
0.6 to 1.2
Copper (Cu), % 0 to 1.0
0 to 0.25
Iron (Fe), % 0 to 0.8
93.6 to 97.3
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.050 to 0.55
0.25 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.3
1.3 to 2.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 10.5 to 13.5
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.3
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0