MakeItFrom.com
Menu (ESC)

EN AC-47000 Aluminum vs. C96300 Copper-nickel

EN AC-47000 aluminum belongs to the aluminum alloys classification, while C96300 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47000 aluminum and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
150
Elastic (Young's, Tensile) Modulus, GPa 73
130
Elongation at Break, % 1.7
11
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
49
Tensile Strength: Ultimate (UTS), MPa 180
580
Tensile Strength: Yield (Proof), MPa 97
430

Thermal Properties

Latent Heat of Fusion, J/g 570
230
Maximum Temperature: Mechanical, °C 170
240
Melting Completion (Liquidus), °C 590
1200
Melting Onset (Solidus), °C 570
1150
Specific Heat Capacity, J/kg-K 900
400
Thermal Conductivity, W/m-K 130
37
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 7.7
5.1
Embodied Energy, MJ/kg 140
76
Embodied Water, L/kg 1040
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
59
Resilience: Unit (Modulus of Resilience), kJ/m3 65
720
Stiffness to Weight: Axial, points 16
8.2
Stiffness to Weight: Bending, points 54
19
Strength to Weight: Axial, points 19
18
Strength to Weight: Bending, points 27
17
Thermal Diffusivity, mm2/s 55
10
Thermal Shock Resistance, points 8.3
20

Alloy Composition

Aluminum (Al), % 82.1 to 89.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 1.0
72.3 to 80.8
Iron (Fe), % 0 to 0.8
0.5 to 1.5
Lead (Pb), % 0 to 0.2
0 to 0.010
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.050 to 0.55
0.25 to 1.5
Nickel (Ni), % 0 to 0.3
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 10.5 to 13.5
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0
0 to 0.5