MakeItFrom.com
Menu (ESC)

EN AC-47000 Aluminum vs. S32050 Stainless Steel

EN AC-47000 aluminum belongs to the aluminum alloys classification, while S32050 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47000 aluminum and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
220
Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 1.7
46
Fatigue Strength, MPa 68
340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 180
770
Tensile Strength: Yield (Proof), MPa 97
370

Thermal Properties

Latent Heat of Fusion, J/g 570
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 7.7
6.0
Embodied Energy, MJ/kg 140
81
Embodied Water, L/kg 1040
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
290
Resilience: Unit (Modulus of Resilience), kJ/m3 65
330
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 19
27
Strength to Weight: Bending, points 27
23
Thermal Diffusivity, mm2/s 55
3.3
Thermal Shock Resistance, points 8.3
17

Alloy Composition

Aluminum (Al), % 82.1 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
22 to 24
Copper (Cu), % 0 to 1.0
0 to 0.4
Iron (Fe), % 0 to 0.8
43.1 to 51.8
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.050 to 0.55
0 to 1.5
Molybdenum (Mo), % 0
6.0 to 6.6
Nickel (Ni), % 0 to 0.3
20 to 23
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 10.5 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0