MakeItFrom.com
Menu (ESC)

EN AC-47000 Aluminum vs. S35135 Stainless Steel

EN AC-47000 aluminum belongs to the aluminum alloys classification, while S35135 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47000 aluminum and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.7
34
Fatigue Strength, MPa 68
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 180
590
Tensile Strength: Yield (Proof), MPa 97
230

Thermal Properties

Latent Heat of Fusion, J/g 570
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1430
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 7.7
6.8
Embodied Energy, MJ/kg 140
94
Embodied Water, L/kg 1040
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
160
Resilience: Unit (Modulus of Resilience), kJ/m3 65
130
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 19
20
Strength to Weight: Bending, points 27
19
Thermal Shock Resistance, points 8.3
13

Alloy Composition

Aluminum (Al), % 82.1 to 89.5
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
20 to 25
Copper (Cu), % 0 to 1.0
0 to 0.75
Iron (Fe), % 0 to 0.8
28.3 to 45
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.050 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 0 to 0.3
30 to 38
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 10.5 to 13.5
0.6 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0.4 to 1.0
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0