MakeItFrom.com
Menu (ESC)

EN AC-47000 Aluminum vs. S45500 Stainless Steel

EN AC-47000 aluminum belongs to the aluminum alloys classification, while S45500 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47000 aluminum and the bottom bar is S45500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
280 to 500
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.7
3.4 to 11
Fatigue Strength, MPa 68
570 to 890
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 180
1370 to 1850
Tensile Strength: Yield (Proof), MPa 97
1240 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 170
760
Melting Completion (Liquidus), °C 590
1440
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 21
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.7
3.8
Embodied Energy, MJ/kg 140
57
Embodied Water, L/kg 1040
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
45 to 190
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 19
48 to 65
Strength to Weight: Bending, points 27
35 to 42
Thermal Shock Resistance, points 8.3
48 to 64

Alloy Composition

Aluminum (Al), % 82.1 to 89.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
11 to 12.5
Copper (Cu), % 0 to 1.0
1.5 to 2.5
Iron (Fe), % 0 to 0.8
71.5 to 79.2
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.050 to 0.55
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.3
7.5 to 9.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 13.5
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.5
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0.8 to 1.4
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0