MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. 2030 Aluminum

Both EN AC-47100 aluminum and 2030 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is 2030 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
70
Elongation at Break, % 1.1
5.6 to 8.0
Fatigue Strength, MPa 110
91 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 270
370 to 420
Tensile Strength: Yield (Proof), MPa 160
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 570
390
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 560
510
Specific Heat Capacity, J/kg-K 890
870
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
34
Electrical Conductivity: Equal Weight (Specific), % IACS 100
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 7.6
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1030
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 170
390 to 530
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
45
Strength to Weight: Axial, points 28
33 to 38
Strength to Weight: Bending, points 35
37 to 40
Thermal Diffusivity, mm2/s 54
50
Thermal Shock Resistance, points 12
16 to 19

Alloy Composition

Aluminum (Al), % 81.4 to 88.8
88.9 to 95.2
Bismuth (Bi), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.1
0 to 0.1
Copper (Cu), % 0.7 to 1.2
3.3 to 4.5
Iron (Fe), % 0 to 1.3
0 to 0.7
Lead (Pb), % 0 to 0.2
0.8 to 1.5
Magnesium (Mg), % 0 to 0.35
0.5 to 1.3
Manganese (Mn), % 0 to 0.55
0.2 to 1.0
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 10.5 to 13.5
0 to 0.8
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.55
0 to 0.5
Residuals, % 0
0 to 0.3