MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. 296.0 Aluminum

Both EN AC-47100 aluminum and 296.0 aluminum are aluminum alloys. They have 90% of their average alloy composition in common.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is 296.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
75 to 90
Elastic (Young's, Tensile) Modulus, GPa 73
72
Elongation at Break, % 1.1
3.2 to 7.1
Fatigue Strength, MPa 110
47 to 70
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 270
260 to 270
Tensile Strength: Yield (Proof), MPa 160
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 570
420
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
630
Melting Onset (Solidus), °C 560
540
Specific Heat Capacity, J/kg-K 890
870
Thermal Conductivity, W/m-K 130
130 to 150
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
33 to 37
Electrical Conductivity: Equal Weight (Specific), % IACS 100
99 to 110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
3.0
Embodied Carbon, kg CO2/kg material 7.6
7.8
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1030
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
7.6 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 170
110 to 220
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
46
Strength to Weight: Axial, points 28
24 to 25
Strength to Weight: Bending, points 35
30 to 31
Thermal Diffusivity, mm2/s 54
51 to 56
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 81.4 to 88.8
89 to 94
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.7 to 1.2
4.0 to 5.0
Iron (Fe), % 0 to 1.3
0 to 1.2
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0 to 0.050
Manganese (Mn), % 0 to 0.55
0 to 0.35
Nickel (Ni), % 0 to 0.3
0 to 0.35
Silicon (Si), % 10.5 to 13.5
2.0 to 3.0
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.55
0 to 0.5
Residuals, % 0
0 to 0.35