MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. 5010 Aluminum

Both EN AC-47100 aluminum and 5010 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is 5010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
27 to 62
Elastic (Young's, Tensile) Modulus, GPa 73
69
Elongation at Break, % 1.1
1.1 to 23
Fatigue Strength, MPa 110
35 to 83
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 270
100 to 210
Tensile Strength: Yield (Proof), MPa 160
38 to 190

Thermal Properties

Latent Heat of Fusion, J/g 570
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 590
650
Melting Onset (Solidus), °C 560
630
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 130
200
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
45
Electrical Conductivity: Equal Weight (Specific), % IACS 100
150

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1030
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
2.3 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 170
10 to 270
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
50
Strength to Weight: Axial, points 28
10 to 22
Strength to Weight: Bending, points 35
18 to 29
Thermal Diffusivity, mm2/s 54
82
Thermal Shock Resistance, points 12
4.5 to 9.4

Alloy Composition

Aluminum (Al), % 81.4 to 88.8
97.1 to 99.7
Chromium (Cr), % 0 to 0.1
0 to 0.15
Copper (Cu), % 0.7 to 1.2
0 to 0.25
Iron (Fe), % 0 to 1.3
0 to 0.7
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0.2 to 0.6
Manganese (Mn), % 0 to 0.55
0.1 to 0.3
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 10.5 to 13.5
0 to 0.4
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.55
0 to 0.3
Residuals, % 0
0 to 0.15