MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. 5252 Aluminum

Both EN AC-47100 aluminum and 5252 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is 5252 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
68 to 75
Elastic (Young's, Tensile) Modulus, GPa 73
68
Elongation at Break, % 1.1
4.5 to 11
Fatigue Strength, MPa 110
100 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 270
230 to 290
Tensile Strength: Yield (Proof), MPa 160
170 to 240

Thermal Properties

Latent Heat of Fusion, J/g 570
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 590
650
Melting Onset (Solidus), °C 560
610
Specific Heat Capacity, J/kg-K 890
910
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
34
Electrical Conductivity: Equal Weight (Specific), % IACS 100
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.7
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1030
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 170
210 to 430
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
51
Strength to Weight: Axial, points 28
23 to 30
Strength to Weight: Bending, points 35
31 to 36
Thermal Diffusivity, mm2/s 54
57
Thermal Shock Resistance, points 12
10 to 13

Alloy Composition

Aluminum (Al), % 81.4 to 88.8
96.6 to 97.8
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.7 to 1.2
0 to 0.1
Iron (Fe), % 0 to 1.3
0 to 0.1
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
2.2 to 2.8
Manganese (Mn), % 0 to 0.55
0 to 0.1
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 10.5 to 13.5
0 to 0.080
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.55
0 to 0.050
Residuals, % 0
0 to 0.1