MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. 6005 Aluminum

Both EN AC-47100 aluminum and 6005 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is 6005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
90 to 95
Elastic (Young's, Tensile) Modulus, GPa 73
68
Elongation at Break, % 1.1
9.5 to 17
Fatigue Strength, MPa 110
55 to 95
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 270
190 to 310
Tensile Strength: Yield (Proof), MPa 160
100 to 280

Thermal Properties

Latent Heat of Fusion, J/g 570
410
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 590
650
Melting Onset (Solidus), °C 560
610
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 130
180 to 200
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
54
Electrical Conductivity: Equal Weight (Specific), % IACS 100
180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1030
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
27 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 170
77 to 550
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
51
Strength to Weight: Axial, points 28
20 to 32
Strength to Weight: Bending, points 35
28 to 38
Thermal Diffusivity, mm2/s 54
74 to 83
Thermal Shock Resistance, points 12
8.6 to 14

Alloy Composition

Aluminum (Al), % 81.4 to 88.8
97.5 to 99
Chromium (Cr), % 0 to 0.1
0 to 0.1
Copper (Cu), % 0.7 to 1.2
0 to 0.1
Iron (Fe), % 0 to 1.3
0 to 0.35
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0.4 to 0.6
Manganese (Mn), % 0 to 0.55
0 to 0.1
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 10.5 to 13.5
0.6 to 0.9
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.55
0 to 0.1
Residuals, % 0
0 to 0.15