MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. EN 1.4438 Stainless Steel

EN AC-47100 aluminum belongs to the aluminum alloys classification, while EN 1.4438 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is EN 1.4438 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
180
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.1
41
Fatigue Strength, MPa 110
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 270
620
Tensile Strength: Yield (Proof), MPa 160
250

Thermal Properties

Latent Heat of Fusion, J/g 570
290
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.6
4.4
Embodied Energy, MJ/kg 140
60
Embodied Water, L/kg 1030
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
200
Resilience: Unit (Modulus of Resilience), kJ/m3 170
150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 28
22
Strength to Weight: Bending, points 35
20
Thermal Diffusivity, mm2/s 54
3.7
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 81.4 to 88.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
17.5 to 19.5
Copper (Cu), % 0.7 to 1.2
0
Iron (Fe), % 0 to 1.3
57.3 to 66.5
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.3
13 to 16
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 10.5 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0