MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. EN 1.4910 Stainless Steel

EN AC-47100 aluminum belongs to the aluminum alloys classification, while EN 1.4910 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is EN 1.4910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
200
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.1
41
Fatigue Strength, MPa 110
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 270
650
Tensile Strength: Yield (Proof), MPa 160
290

Thermal Properties

Latent Heat of Fusion, J/g 570
290
Maximum Temperature: Mechanical, °C 170
950
Melting Completion (Liquidus), °C 590
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.6
3.9
Embodied Energy, MJ/kg 140
54
Embodied Water, L/kg 1030
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
220
Resilience: Unit (Modulus of Resilience), kJ/m3 170
210
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 28
23
Strength to Weight: Bending, points 35
21
Thermal Diffusivity, mm2/s 54
4.3
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 81.4 to 88.8
0
Boron (B), % 0
0.0015 to 0.0050
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.1
16 to 18
Copper (Cu), % 0.7 to 1.2
0
Iron (Fe), % 0 to 1.3
62 to 69.9
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.3
12 to 14
Nitrogen (N), % 0
0.1 to 0.18
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 10.5 to 13.5
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0