MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. Grade VDSiCrV Steel

EN AC-47100 aluminum belongs to the aluminum alloys classification, while grade VDSiCrV steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is grade VDSiCrV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
630
Elastic (Young's, Tensile) Modulus, GPa 73
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 270
2100

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 590
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 130
47
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.3
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.6
1.9
Embodied Energy, MJ/kg 140
26
Embodied Water, L/kg 1030
50

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 28
75
Strength to Weight: Bending, points 35
47
Thermal Diffusivity, mm2/s 54
13
Thermal Shock Resistance, points 12
63

Alloy Composition

Aluminum (Al), % 81.4 to 88.8
0
Carbon (C), % 0
0.5 to 0.7
Chromium (Cr), % 0 to 0.1
0.5 to 1.0
Copper (Cu), % 0.7 to 1.2
0 to 0.060
Iron (Fe), % 0 to 1.3
96.1 to 97.8
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0 to 0.55
0.4 to 0.9
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 10.5 to 13.5
1.2 to 1.7
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.1 to 0.25
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0