MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. N06219 Nickel

EN AC-47100 aluminum belongs to the aluminum alloys classification, while N06219 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is N06219 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.1
48
Fatigue Strength, MPa 110
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 270
730
Tensile Strength: Yield (Proof), MPa 160
300

Thermal Properties

Latent Heat of Fusion, J/g 570
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 590
1430
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 7.6
11
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1030
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
280
Resilience: Unit (Modulus of Resilience), kJ/m3 170
230
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 28
24
Strength to Weight: Bending, points 35
21
Thermal Diffusivity, mm2/s 54
2.7
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 81.4 to 88.8
0 to 0.5
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
18 to 22
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0.7 to 1.2
0 to 0.5
Iron (Fe), % 0 to 1.3
2.0 to 4.0
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0 to 0.55
0 to 0.5
Molybdenum (Mo), % 0
7.0 to 9.0
Nickel (Ni), % 0 to 0.3
60.8 to 72.3
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 10.5 to 13.5
0.7 to 1.1
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.5
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0