MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. N08904 Stainless Steel

EN AC-47100 aluminum belongs to the aluminum alloys classification, while N08904 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is N08904 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
170
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.1
38
Fatigue Strength, MPa 110
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 270
540
Tensile Strength: Yield (Proof), MPa 160
240

Thermal Properties

Latent Heat of Fusion, J/g 570
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1440
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 7.6
5.8
Embodied Energy, MJ/kg 140
79
Embodied Water, L/kg 1030
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
170
Resilience: Unit (Modulus of Resilience), kJ/m3 170
150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 35
18
Thermal Diffusivity, mm2/s 54
3.1
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 81.4 to 88.8
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.1
19 to 23
Copper (Cu), % 0.7 to 1.2
1.0 to 2.0
Iron (Fe), % 0 to 1.3
38.8 to 53
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.3
23 to 28
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 10.5 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0