MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. S32950 Stainless Steel

EN AC-47100 aluminum belongs to the aluminum alloys classification, while S32950 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is S32950 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
260
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.1
17
Fatigue Strength, MPa 110
330
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 270
780
Tensile Strength: Yield (Proof), MPa 160
550

Thermal Properties

Latent Heat of Fusion, J/g 570
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1430
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.6
3.4
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 1030
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
120
Resilience: Unit (Modulus of Resilience), kJ/m3 170
730
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 28
28
Strength to Weight: Bending, points 35
24
Thermal Diffusivity, mm2/s 54
4.3
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 81.4 to 88.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
26 to 29
Copper (Cu), % 0.7 to 1.2
0
Iron (Fe), % 0 to 1.3
60.3 to 69.4
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 2.5
Nickel (Ni), % 0 to 0.3
3.5 to 5.2
Nitrogen (N), % 0
0.15 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 10.5 to 13.5
0 to 0.6
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0